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A technique for conditionally creating single-mode or multimode photon-number states is analyzed using
Bayesian theory. We consider the heralded N-photon states created from the photons produced by an unseeded
optical parametric amplifier when the heralding detector is the time-multiplexed photon-number-resolving
detector recently demonstrated by Fitch et al. �Phys. Rev. A 68, 043814 �2003�� and simultaneously by
Achilles et al. �Opt. Lett. 28, 2387 �2003��. We find that even with significant loss in the heralding detector,
fields with sub-Poissonian photon-number distributions can be created. We also show that heralded multimode
fields created using this technique are more robust against detector loss than are single-mode fields.
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I. INTRODUCTION

A Fock state of the electromagnetic field contains a defi-
nite number of photons and hence displays no intensity fluc-
tuations. In contrast, the distribution of the intensities of a
classical field of light has a variance at least as large as its
mean �1�. Thus, Fock states and other states with sub-
Poissonian photon-number statistics are of interest not only
because of their fundamentally nonclassical nature but also
because of their potential to make radiometric measurements
with greater accuracy than possible using classical states of
light. Research in Fock state generation is also motivated by
its applications in quantum information science �2� including
the areas of quantum cryptography �3� and quantum comput-
ing �4�.

Unfortunately, it can be experimentally challenging to
produce light fields that contain definite numbers of photons.
Several theoretical proposals aimed at creating Fock states
“on demand” have been offered �5–7�, but they involve
trapped atoms in high-Q cavities and to the best of our
knowledge only single-photon states have been created in the
laboratory �8�. Several stochastic sources of one- and two-
photon states have been experimentally demonstrated using
various processes including atomic and molecular fluores-
cence �9,10�, Coulomb blockade for electrons �11� and action
in a micromaser �12�. In addition, a particularly simple
method of generating single-photon states using the photon
pairs created in the process of spontaneous parametric down
conversion was first demonstrated by Hong and Mandel �13�.
In their experiment, they used the single-photon detection of
one photon of the pair to “herald” the presence of the other
photon of the pair. This heralding scheme is generalizable to
create multiphoton states of light. In an unseeded optical
parametric amplifier �OPA�, pump photons interact nonlin-
early with a noncentrosymmetric crystal to produce multiple
pairs of less energetic photons termed the signal and idler
through the process of parametric down conversion. In gen-
eral, the number of photons found in the signal and idler

fields is random and known to obey thermal statistics, which
can be characterized by the gain g of the OPA. But since the
emission of every signal photon requires the simultaneous
emission of an idler photon, if one knows the number of
photons in the idler field then the number in the signal field
is determined with complete certainty. Thus, in principle, by
allowing transmission of the signal field only when the idler
field is found to contain n photons, the signal field will be
guaranteed to also contain exactly n photons. This idea was
considered by Holmes et al. �14� for ideal photon-number-
resolving detection.

However, the photon-number-resolving detection needed
to create heralded multiphoton states is not trivial to imple-
ment and is an area of active research. Photon-number-
resolving detection has been achieved using superconducting
transition-edge sensors �15�, visible light counters �16�,
charge integration photon detectors �17�, and by time-
multiplexed detection involving only commercially available
avalanche photodiodes �APDs� �18,19�. In the present work,
we show that, in particular, the photon-number resolution
achieved using time-multiplexed detectors �TMDs�, as first
conceived by Fitch et al. �18� and independently by Achilles
et al. �19�, is well-suited for creating heralded fields with
near-definite numbers of photons even in the presence of
significant detector loss. This technique has been demon-
strated experimentally for two-photon states �20� but has not
yet been analyzed in a comprehensive fashion for states con-
taining greater numbers of photons.

II. HERALDING WITH IMPERFECT DETECTION

A schematic of the proposed heralding technique is shown
in Fig. 1. As mentioned above, the source of photon pairs is
the output of an unseeded OPA and the heralding detector is
a TMD. The TMD provides photon-number resolution by
first randomly splitting the incoming state into many path-
ways that are separated in time from one another, i.e., they
are separated into time bins. The number of photons in the
incoming field can be estimated to be equal to the total num-
ber of photons detected by two APDs. Any errors in this
estimation will introduce uncertainty into the number of pho-*osulliva@optics.rochester.edu
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tons contained in the heralded state. Undercounting is the
main source of errors in TMDs. The two primary mecha-
nisms for undercounting errors are losses and inadequate
splitting of the incoming beam. Losses in the detection sys-
tem stemming both from the beam splitters and from ineffi-
ciencies in detectors themselves can be quite significant and
must be included in the analysis. Inadequate splitting occurs
because of the finite number of times the incoming beam is
split. Hence, a chance exists that two or more photons will
occupy the same time bin resulting in an undercounting error
at the APDs, which can perform only on/off detection. More
quantitatively, a system containing m beam splitters will
have M �2m different time bins. If the number of incoming
photons N is much less than M, the probability of under-
counting due to imperfect splitting will be small. However,
when N is comparable to M, we must account for splitting
errors. Using a standard urn model �18,21�, we can calculate
the conditional probability of detecting n photons given that
the incoming field has N photons in it. This probability is
given by the expression

Pdet��n�N� = �M

n
�	

j=0

n

�− 1� j�n

j
���1 − �� +

��n − j�
M

�N

,

�1�

where � is the single-photon detection efficiency. It is not
difficult to verify that in the limit M �1 and M �N detection
errors due to imperfect splitting are negligible and that
Pdet��n�N�→ � N

n ��1−��N−n�n, which is the expected distribu-
tion for an ideal photon-number-resolving detector subject to
a loss of 1−� per photon. We note that detector dark counts
are a source of over-counting errors. However, in the present
analysis, we do not include the effect of detector dark counts,
since often they can be rendered negligible through detector
gating or by use of detectors with intrinsically low dark
count rates �commercially available APD dark count rates
can be as low as 5 dark counts per second�.

The response of the detection system is shown in Fig. 2
for a system comprised of five beam splitters �M =32� for
three different scenarios. For no loss in the TMD ��=1� and

few enough incident photons, the detector will accurately
measure the number of photons in the field, i.e., the initial
slope of the mean of the probability distribution is linear
with unity slope. Once the number of incident photons in-
creases and becomes comparable to the maximum number of
photons M the system can count, undercounting will become
very likely and the detection system will saturate. As the loss
in the system increases �� decreases�, two effects are seen:
�1� The initial slope decreases and is given roughly by � and
�2� the error in the estimate increases as seen by the increase
in the vertical spread of the distribution in the plot.

As we already mentioned, in a heralding system any error
in the detection of the number of photons in the heralding
field will directly lead to an uncertainty in the number of the
photons in the heralded field. If this uncertainty, as deter-
mined by the variance of the number photons estimated to be
in the heralding field, becomes larger than the mean number
of photons in the heralded field, the state can, in principle, be
produced by classical means. However, since the source of
the photon pairs is an OPA, we can use this a priori infor-
mation about its photon emission statistics to improve our
estimation through the use of Bayesian theory.

III. BAYESIAN ANALYSIS

The probability that an OPA characterized by gain g will
emit k pairs of photons is given by POPA�k�= �
k ,k ����2,
where �k ,k� is the state containing k photons in both the
signal and idler fields and ��� is the state emitted by the OPA,
which is given by exp�gâi

†âs
†−gâiâs��0,0� �22�. As a nota-

tional device, we will identify the signal field with the her-
alded field and the idler field with the heralding field. It can
be shown that the resulting photon-number distribution for
either the signal or idler field obey Bose-Einstein statistics
and is given by

POPA�k� = �1 − tanh2 g�tanh2k g . �2�

We can calculate the resulting mixed state of the signal field
given that ni photons are detected in the idler field. The den-
sity matrix is given by
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FIG. 1. �Color online� �a� Scheme to produce heralded fields
containing a definite number of photons. An unseeded optical para-
metric amplifier �OPA� produces photon pairs through the process
of parametric down conversion. When a time-multiplexed photon-
number-resolving detector �shown in �b�� detects ni photons in the
idler field, it heralds the presence of ns photons in the signal field
with probability Psig��ns�ni�.
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FIG. 2. �Color online� Regions where there is a significant prob-
ability of detecting n photons conditioned on N photons being in-
cident on the TMD for three different single-photon detection effi-
ciencies ��=1.0,0.66,0.33�. The mean number of photons detected
given N photons input into the detection system are plotted using
the solid ��=1�, dotted ��=0.66�, and dashed ��=0.33� lines. The
shaded regions are within one standard deviation of the means.
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�̂sig�ni� = 	
ns=ni

�

Psig��ns�ni��ns�
ns� , �3�

where �ns� is a Fock state of the signal field with ns photons
in it. The function Psig��ns�ni� is the probability that the signal
field has ns photons in it given that ni photons are detected in
the idler field. According to Bayes’ theorem, it is given by
the expression

Psig��ns�ni� =
Pdet��ni�ns�POPA�ns�

	
k=0

�

Pdet��ni�k�POPA�k�

. �4�

We estimate the number of photons in the signal field using
maximum-likelihood estimation. The maximum-likelihood
estimate of the number of photons in the signal field given ni
photons detected in the idler field is found using

ns
ml�ni� = arg max

ns

Psig��ns�ni� , �5�

where the arg max function returns the value of ns� �ni ,ni
+1, . . . ,� that maximizes Psig��ns�ni�.

In Fig. 3 we show the photon-number statistics for a her-
alded field estimated to have ns

ml=5 photons in it and com-
pare it to a classical coherent state that has Poisson statistics
with a mean number of photons equal to 5. From the figure it
is clear that the photon-number distribution of the heralded
state is much narrower than the distribution for the compa-
rable classical coherent state. The width of the heralded field
distribution is exactly the error in the maximum-likelihood
estimate and is found using the mean-squared error, i.e.,
��ns

ml�ni

2 =	ns
�ns−ns

ml�2Psig��ns�ni�. Figure 4 compares the ra-
tio of the spreads of the heralded fields to their classical
counterparts for different numbers of photons in the herald-
ing field for various values of the single-photon detection
efficiency � and the OPA gain g. When this ratio is equal to
unity, the heralded field has as much uncertainty in its num-
ber of photons as a Poissonian field. The smaller the ratio is,
the closer the heralded field is to a Fock state. The quality of

the heralded state degrades as the loss increases and the gain
of the OPA increases, as can be seen by noting that the ratio
increases in these cases.

To gain further insight into the behavior of the heralded
state, we consider the mean number of photons in the her-
alded field. Although the mean number of photons cannot be
an estimator of the number of photons in the heralded field,
since it can take noninteger values, it is a useful parameter
that characterizes the field and can be analytically calculated.
The mean number of photons in the signal field conditioned
on ni photons being detected in the idler field can be ex-
pressed in the following remarkably simple form �see the
Appendix�:


ns�ni
= 	

j=0

ni

aj − 1. �6�

Similarly, the conditional variance of the number of photons
in the signal field can be expressed by

��ns�ni

2 = 	
j=0

ni

�aj
2 − aj� , �7�

where in both equations we have introduced the quantity aj
= �1−tanh2 g��1−��+��n− j� /M�−1 for notational conve-
nience. An ideal system would produce Fock states with
definite photon number so that ��ns�ni

2 would vanish. We note
that aj cannot vanish since that requires � to vanish, which is
not a physically meaningful situation. Thus, ��ns�ni

2 goes to
zero only in the limit in which aj→1. Also in this limit the
conditional mean 
ns�ni

→ni, which is consistent with the ex-
pected behavior of an ideal heralding system.

Two cases exist in which aj approaches unity. The first
case occurs in the low gain limit. Irrespective of the system
loss �, aj can be made arbitrarily close to 1 for small enough
gain since aj �1 / �1−tanh2 g�=1+O�g2�. Intuitively, this
limit is easily understood. When the gain is small enough, it
is much more likely for the source to produce ns photon pairs
and the detector to count ni of them than it is for the source
to produce ns+1 pairs and the detector to still detect only ni.
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FIG. 3. �Color online� Comparison of the photon-number statis-
tics for a typical heralded field with ns

ml=5 and a Poisson-
distributed field with a mean photon number of 5. The heralded
field, for the case in which �=0.66 and g=1, is conditioned on the
detection of four photons in the idler field by the TMD.
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FIG. 4. �Color online� Uncertainty in the number of photons in
a heralded field when ni photons are detected in the heralding field
normalized to the uncertainty in a comparable Poisson-distributed
field with mean number of photons ns

ml for various detection effi-
ciencies ��=0.33,0.66,1.0� and OPA gains �g=0.75,1�.
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More quantitatively, there exists a gain such that the ratio r
= Pdet��ni�ns�POPA�ns� / �Pdet��ni�ns+1�POPA�ns+1��1. This
statement is easily verified by noting that r�1 / tanh2 g and
can be made large for small enough g. The second case in
which aj goes to 1 occurs when M�n and �=1. In this limit
the TMD behaves like an ideal photon-number-resolving de-
tector and the system achieves perfect heralding.

Although these limiting cases are useful in providing in-
sight into the behavior of the system, they are often not vi-
able experimentally. If the gain is too low, the rate at which
the heralded states are produced becomes impractically
small. Furthermore, in many cases M cannot be too large, if
for no other reason than that the loss incurred by adding
splitters can become excessive. To treat the problem more
generally, we calculate Mandel’s Q parameter defined by Q
= ���ns�ni

2 − 
ns�ni
� / 
ns�ni

�1�. Mandel’s Q parameter is useful
for characterizing the nature of the photon-number distribu-
tion of a field. The Q parameter is bounded below by −1. In
the limit in which Q=−1, the heralded field is in a Fock
state. For Q=0, the field has Poissonian photon-number sta-
tistics; for positive and negative Q the field has super- and
sub-Poissonian statistics, respectively. We use this parameter
as a merit function describing the quality of the heralded
states produced using the technique.

In practice, it is useful to know the TMD and OPA param-
eters necessary to produce a state that contains an estimated
ns

ml photons and a certain value of the Q parameter. To this
end, we calculate Q at constant ns

ml versus the parameters �
and g. Figure 5 shows the result of the calculation for a
heralding detector comprised of five beam splitters for the
case when ns

ml=5. To calculate Q for constant ns
ml it is nec-

essary to invert Eq. �5� to find the appropriate value of ni to
be substituted into Eqs. �6� and �7�. For certain values of the
gain and detector efficiencies, Eq. �5� cannot be inverted, i.e.,

there is no integer number of detected photons ni that corre-
spond to a signal field in which ns

ml=5. In these instances, a
signal field estimated to contain five photons is not possible
to produce and is marked by the gray, patterned regions in
the plot. Also, these gray, patterned bands divide the space
into regions corresponding to the number of detected idler
photons that herald the presence of five photons in the signal
field. The figure confirms that the losses as well as the OPA
gain should be kept as small as possible. In addition, the
efficiency with which the heralded states are created is im-
portant. The white contour lines overlaid on the plot show
the probability with which the heralded state is successfully
created, which is denoted by P�g ,� ;ns

ml�. This probability is
calculated from the sum 	k=0

� Pdet��ni�k�POPA�k�, where ni is
obtained from the inversion of Eq. �5� for different values of
g and �. The discrete jumps seen in the contour lines are due
to the fact that the ni can take only integer values. We see
that it is possible to create nearly ideal Fock states even with
significant detector loss; however, the efficiency of the cre-
ation of the heralded states is sacrificed.

IV. HERALDED MULTIMODE STATES

Up to this point, we have considered only single-mode
states produced by an OPA. Although the single-mode limit
can be reached, e.g., by both spatially and frequency filtering
�23�, the photons emitted by a free-space OPA are generally
multimodal in nature and can be approximately described by
a multimode thermal distribution �24�. The probability that
the OPA will emit k pairs of photons distributed among any
	 modes is given by

POPA,	�k� = �k + 	 − 1

	 − 1
��1 − tanh2 g�	tanh2k g , �8�

where g is the parameter characterizing the gain per mode of
the OPA. We have assumed that each mode is equally likely
to be occupied. The multimode thermal distribution has a
variance of 
k��1+ 
k� /	�. Since when 
k� is held constant,
the variance decreases with increasing number of modes, it is
reasonable to expect that we may be able to create multi-
mode fields containing near-definite numbers of photons un-
der more relaxed conditions than by restricting ourselves to
single-mode states.

In Fig. 6 we plot the Q parameter under the same condi-
tions as in Fig. 5 but now assuming that we are interested in
the multimode output of the OPA �see the Appendix for cal-
culation details�. We take 	=5 as an example, which is a
typical value for a free space OPA �25�. When comparing
Fig. 5 and Fig. 6, we see that the multimode case is more
tolerant of loss in the heralding detector than the single-mode
case. For example, if we require a heralded state preparation
rate of 5%, the heralded output of the OPA is sub-Poissonian
so long as �
0.11, but in the single-mode case we have the
more stringent requirement that �
0.36.

V. CONCLUSIONS

In conclusion, we have shown that it is possible to create
multiphoton heralded states with highly nonclassical photon-
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FIG. 5. �Color online� Mandel’s Q parameter versus the gain of
the OPA and the single-photon detection efficiency of the TMD for
the case where ns

ml=5, i.e., the heralded field is a single-mode field
estimated to contain five photons. The regions are labeled with the
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The TMD is assumed to contain five beam splitters �M =32�.
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number distributions using a TMD as the heralding detector.
We calculated Mandel’s Q parameter as a function of the
detector loss and the OPA gain to characterize the quality of
the heralded state. Even in the presence of significant loss,
we found that it is possible to produce states with highly
sub-Poissonian photon-number distributions at reasonable ef-
ficiencies. In addition, for situations where a single-mode
output is not required, we showed that the full multimode
output of an OPA can provide less uncertainty in the number
of photons in the field than the single-mode output. Since the
TMDs involve only commercially available APDs and fibers,
the technique we have presented here can be a particularly
simple way to create states of light containing nearly definite
numbers of photons.

The authors would like to thank Christine Silberhorn and
Gerd Leuchs for helpful discussions. This work was sup-
ported by the U.S. Army Research Office through a MURI
grant. One of the authors �K.W.C.� thanks the support from
the Croucher Foundation.

APPENDIX: CALCULATION OF THE CONDITIONAL
MEAN AND VARIANCE

The derivation of the conditional mean and variance of
the number of photons in the signal field conditioned on ni
photons being detected in the idler field is described in this
appendix.

To calculate the conditional mean and variance, we need
to evaluate the sums defined by

Sl = 	
ns=0

�

ns
l Pdet��ni�ns�POPA,	�ns�, l = 0,1,2, �A1�

where Pdet��ni�ns� and POPA,	�ns� are the probability distribu-
tions given in the text in Eq. �1� and Eq. �8�, respectively.

The simplest case is that of l=0. Performing the summa-
tion over ns by recognizing the negative binomial series, we
find

S0 = A	
j=0

ni �ni

j
� �− 1� j

�x + j�	 , �A2�

where we have defined A= � M
ni

��M / �� sinh2 g��	 and x
=M / �� sinh2 g�+M −ni for simplicity. Next, using the iden-
tity for Gauss hypergeometric series, 	 j=0

ni �
ni

j ��−1� j / �x+ j�
=B�x ,1+ni�, where B�a ,b����a���b� /��a+b� is the �
function, we express S0 as

S0 = A
�− 1�	−1

�	 − 1�!
�x

�	−1�B�x,1 + ni� , �A3�

where �x
�	−1� is shorthand for the �	−1�th-order partial de-

rivative with respect to x.
We follow an analogous procedure for the case when l

=1,2, where the primary difference is that the summations
over ns are now derivatives of the negative binomial series.
The resulting sum S1 is given by

S1 = A
	�− 1�	

	!
�x

�	���x + b�B�x,1 + ni�� , �A4�

with b=M�1−�� /�+ni. The sum S2 is similarly given by

S2 = A
	2�− 1�	+1

�	 + 1�!
�x

�	+1�

��x + b�2B�x,1 + ni� +
�x + b�c

	
B�x,1 + ni�� ,

�A5�

where c=M / �� tanh2 g� is defined for simplicity.
The conditional mean and variance can be expressed

in terms of these sums as 
ns�ni
=S1 /S0 and ��ns�ni

2

=S2 /S0− �S1 /S0�2. Substituting into these equations and sim-
plifying, we find the general form for the conditional mean
and variance to be


ns�ni
= − 	 − cg	�x� , �A6�

��ns�ni

2 = �c + c2�x�g	�x� , �A7�

where g	�x�=�x
�	�B�x ,1+ni� /�x

�	−1�B�x ,1+ni�. By setting
	=1 it is not difficult to recover the single-mode results of
Eq. �6� and Eq. �7� shown in the text. Furthermore, the
single-mode and multimode expressions for Q can be easily
found from these results.
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